China high quality Ye3-315s 75kw Efficiency Asynchronous Motor for Reduction Gear vacuum pump brakes

Product Description

product/RxyrivtObDVH/China-Typ-Frequency-Variable-Permanent-Magnet-Synchronous-Motor.html

     Xihu (West Lake) Dis. Xihu (West Lake) Dis.i Motor Co.,Ltd which was founded in 1969, is national appointed as chief factory for small and medium-size motor by machinery ministry. It has 50 years history of producing electric Motor.In November 2 square meter’s workshop,8200 square meter’s technology Research building, 23 assembly lines and 2300 sets of producing Machines, and motor testing center (10000KW).The main electric motors for technical research are high-efficiency motor with energy saving, VFD motor, large-size motor and special motor. The company has 1200 staff and workers in total, there are 130 engineers who work on scientific, technical research and test development, Which build “ZheJiang technical center”, “ZheJiang Electrical Engineering Center “. The company passes ISO9001:2008, ISO14001:2004, GB/T28001. 
   
  Main products: high-efficiency motor (YE3 80-355, YE2 56-355), High-efficiency high voltage motor (YX/YXKK/YXKS series H355-800),compact high voltage motor (YX2 H355-560), VFD motor (YVF2 series H80-450),high voltage VFD motor, low voltage rotor motor (YR series H315-355),YR/YRKK high voltage rotor motor, high-efficiency explosion-proof motor (YB3 series H80-355),TDMK series large-size synchronous motor (specified for mine mill), high voltage explosion-proof motor (YB2 H355-560), Y2 series low voltage big power motor, permanent magnet synchronous motor, YE4 series super premium efficiency motor, special motor for car and other special motors for customers. YE3,JHM,YVF2, YE2 series motors pass “CCC” certificates; YE2, YE3 series high-efficiency motors get “CE” certificates; YE3 premium efficiency motor, CXYT permanent magnet synchronous motor, S18/25 get National energy-saving certificates.

    In year 2016, the company achieved sales revenue RMB 1.52 billion Yuan, incoming tax RMB 60 million yuan, net profit RMB 10.171 million yuan, and top 3 comprehensive strength in field of small-medium electric motors in China.

YE3 series super efficiency 3 phase asynchronous motors(H80~355mm)

General Introductions:

YE3 series motors is suitable for almost all applications, and could be used to drive all kinds of general purpose machines such as: compressors, ventilators, pumps, etc. And can also be used in the hazardous areas with oil and chemical, steel plants. Mining industry.

Advantages of this series motor: Improved structure, attractive appearance, high starting torque, high efficiency, low noise, high international protection class and insulation class, improved cooling capabilities.

The standard cooling method for this series is IC411, and the mounting type is IMB3 and IMB35 in general.

 The series needs 50HZ(or 60HZ as required) three-phase power supply that should provide the voltage of 380 or 660V. Its voltage class also can be customized according to user’s needs.

Structure Declaration:

Parallel vertical radiation CHINAMFG are adopted in frame design, and the ventilating structure contains 2 separate cooling wind paths. Air external to the motor would be driven by an external fan to blow over the radiation ribs. Meanwhile, there are 4 ventilating ducts within the frame, and the inner wind path is formed by an internal fan and axiel vents on rotor sheets. In this way, the heat dissipation efficiency is improved effectively. The external fan of 2-pole motors is an one-way tube-axiel fan, whose direction of rotation is fixed, while motors with 4~8poles are provided with a two-way radial centrifugal fan, whose direction of rotation can be arbitrarily selected.

Squirrel-cage copper-bar structure or cast aluminum structure is adopted in rotor design, and the vibration is very low after high-precision dynamic balance and motor running balance tests.

The primary terminal box is mounted at the top of the frame, can be required on left or right. It also can be mounting at a 45-degree angle according to users’ needs.

Work Conditions:
 

Rated voltage 380V
Output power 0.75KW
Poles 2~6
Protection Class IP54/IP55
Insulation Class F/H temperature rise B
Altitude Not exceed 1000m meters
Rated frequency 50HZ
Duty Continuous(S1)
Ambiemt temperature  -15°C~+40°C

The above is The Default Parameters, If you have any other special requirements, you can contact us for Customization.

Q: Are you a factory or trading company?
A: HangZhou XIHU (WEST LAKE) DIS.I is a factory that has been focusing on motors and accessories for more than 50 years.

Q: What about the warranty?
A: We offer 12 month warranty period as the quality guarantee.

Q: Can you do OEM?
A: Yes , we offer OEM.

Q: How about your service?
A: We have pre-sale service, in-sale service and after-sale service.What we pursue is long-term cooperation,
so our principle is customer first.

Q: What are your terms of delivery?
A: Generally we ship in FOB term, but we couldoffer the solution for CNF, CIF and DDP, which all based on your
requirement.

Q: What’s the delivery time?
A: 10 to 30 days after receiving your payment in advance. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Constant Speed
Number of Stator: Three-Phase
Function: Driving, Control
Casing Protection: Open Type
Number of Poles: 6
Customization:
Available

|

gear motor

Can gear motors be used in robotics, and if so, what are some notable applications?

Yes, gear motors are widely used in robotics due to their ability to provide torque, precise control, and compact size. They play a crucial role in various robotic applications, enabling the movement, manipulation, and control of robotic systems. Here are some notable applications of gear motors in robotics:

1. Robotic Arm Manipulation:

Gear motors are commonly used in robotic arms to provide precise and controlled movement. They enable the articulation of the arm’s joints, allowing the robot to reach different positions and orientations. Gear motors with high torque capabilities are essential for lifting, rotating, and manipulating objects with varying weights and sizes.

2. Mobile Robots:

Gear motors are employed in mobile robots, including wheeled robots and legged robots, to drive their locomotion. They provide the necessary torque and control for the robot to move, turn, and navigate in different environments. Gear motors with appropriate gear ratios ensure the robot’s mobility, stability, and maneuverability.

3. Robotic Grippers and End Effectors:

Gear motors are used in robotic grippers and end effectors to control the opening, closing, and gripping force. By integrating gear motors into the gripper mechanism, robots can grasp and manipulate objects of various shapes, sizes, and weights. The gear motors enable precise control over the gripping action, allowing the robot to handle delicate or fragile objects with care.

4. Autonomous Drones and UAVs:

Gear motors are utilized in the propulsion systems of autonomous drones and unmanned aerial vehicles (UAVs). They drive the propellers or rotors, providing the necessary thrust and control for the drone’s flight. Gear motors with high power-to-weight ratios, efficient energy conversion, and precise speed control are crucial for achieving stable and maneuverable flight in drones.

5. Humanoid Robots:

Gear motors are integral to the movement and functionality of humanoid robots. They are used in robotic joints, such as hips, knees, and shoulders, to enable human-like movements. Gear motors with appropriate torque and speed capabilities allow humanoid robots to walk, run, climb stairs, and perform complex motions resembling human actions.

6. Robotic Exoskeletons:

Gear motors play a vital role in robotic exoskeletons, which are wearable robotic devices designed to augment human strength and assist in physical tasks. Gear motors are used in the exoskeleton’s joints and actuators, providing the necessary torque and control to enhance human abilities. They enable users to perform tasks with reduced effort, assist in rehabilitation, or provide support in physically demanding environments.

These are just a few notable applications of gear motors in robotics. Their versatility, torque capabilities, precise control, and compact size make them indispensable components in various robotic systems. Gear motors enable robots to perform complex tasks, move with agility, interact with the environment, and assist humans in a wide range of applications, from industrial automation to healthcare and exploration.

gear motor

What is the significance of gear reduction in gear motors, and how does it affect efficiency?

Gear reduction plays a significant role in gear motors as it enables the motor to deliver higher torque while reducing the output speed. This feature has several important implications for gear motors, including enhanced power transmission, improved control, and potential trade-offs in terms of efficiency. Here’s a detailed explanation of the significance of gear reduction in gear motors and its effect on efficiency:

Significance of Gear Reduction:

1. Increased Torque: Gear reduction allows gear motors to generate higher torque output compared to a motor without gears. By reducing the rotational speed at the output shaft, gear reduction increases the mechanical advantage of the system. This increased torque is beneficial in applications that require high torque to overcome resistance, such as lifting heavy loads or driving machinery with high inertia.

2. Improved Control: Gear reduction enhances the control and precision of gear motors. By reducing the speed, gear reduction allows for finer control over the motor’s rotational movement. This is particularly important in applications that require precise positioning or accurate speed control. The gear reduction mechanism enables gear motors to achieve smoother and more controlled movements, reducing the risk of overshooting or undershooting the desired position.

3. Load Matching: Gear reduction helps match the motor’s power characteristics to the load requirements. Different applications have varying torque and speed requirements. Gear reduction allows the gear motor to achieve a better match between the motor’s power output and the specific requirements of the load. It enables the motor to operate closer to its peak efficiency by optimizing the torque-speed trade-off.

Effect on Efficiency:

While gear reduction offers several advantages, it can also affect the efficiency of gear motors. Here’s how gear reduction impacts efficiency:

1. Mechanical Efficiency: The gear reduction process introduces mechanical components such as gears, bearings, and lubrication systems. These components introduce additional friction and mechanical losses into the system. As a result, some energy is lost in the form of heat during the gear reduction process. The efficiency of the gear motor is influenced by the quality of the gears, the lubrication used, and the overall design of the gear system. Well-designed and properly maintained gear systems can minimize these losses and optimize mechanical efficiency.

2. System Efficiency: Gear reduction affects the overall system efficiency by impacting the motor’s electrical efficiency. In gear motors, the motor typically operates at higher speeds and lower torques compared to a direct-drive motor. The overall system efficiency takes into account both the electrical efficiency of the motor and the mechanical efficiency of the gear system. While gear reduction can increase the torque output, it also introduces additional losses due to increased mechanical complexity. Therefore, the overall system efficiency may be lower compared to a direct-drive motor for certain applications.

It’s important to note that the efficiency of gear motors is influenced by various factors beyond gear reduction, such as motor design, control systems, and operating conditions. The selection of high-quality gears, proper lubrication, and regular maintenance can help minimize losses and improve efficiency. Additionally, advancements in gear technology, such as the use of precision gears and improved lubricants, can contribute to higher overall efficiency in gear motors.

In summary, gear reduction is significant in gear motors as it provides increased torque, improved control, and better load matching. However, gear reduction can introduce mechanical losses and affect the overall efficiency of the system. Proper design, maintenance, and consideration of application requirements are essential to optimize the balance between torque, speed, and efficiency in gear motors.

gear motor

What are the different types of gears used in gear motors, and how do they impact performance?

Various types of gears are used in gear motors, each with its unique characteristics and impact on performance. The choice of gear type depends on the specific requirements of the application, including torque, speed, efficiency, noise level, and space constraints. Here’s a detailed explanation of the different types of gears used in gear motors and their impact on performance:

1. Spur Gears:

Spur gears are the most common type of gears used in gear motors. They have straight teeth that are parallel to the gear’s axis and mesh with another spur gear to transmit power. Spur gears provide high efficiency, reliable operation, and cost-effectiveness. However, they can generate significant noise due to the meshing of teeth, and they may produce axial thrust forces. Spur gears are suitable for applications that require high torque transmission and moderate to high rotational speeds.

2. Helical Gears:

Helical gears have angled teeth that are cut at an angle to the gear’s axis. This helical tooth configuration enables gradual engagement and smoother tooth contact, resulting in reduced noise and vibration compared to spur gears. Helical gears provide higher load-carrying capacity and are suitable for applications that require high torque transmission and moderate to high rotational speeds. They are commonly used in gear motors where low noise operation is desired, such as in automotive applications and industrial machinery.

3. Bevel Gears:

Bevel gears have teeth that are cut on a conical surface. They are used to transmit power between intersecting shafts, usually at right angles. Bevel gears can have straight teeth (straight bevel gears) or curved teeth (spiral bevel gears). These gears provide efficient power transmission and precise motion control in applications where shafts need to change direction. Bevel gears are commonly used in gear motors for applications such as steering systems, machine tools, and printing presses.

4. Worm Gears:

Worm gears consist of a worm (a type of screw) and a mating gear called a worm wheel or worm gear. The worm has a helical thread that meshes with the worm wheel, resulting in a compact and high gear reduction ratio. Worm gears provide high torque transmission, low noise operation, and self-locking properties, which prevent reverse motion. They are commonly used in gear motors for applications that require high gear reduction and locking capabilities, such as in lifting mechanisms, conveyor systems, and machine tools.

5. Planetary Gears:

Planetary gears, also known as epicyclic gears, consist of a central sun gear, multiple planet gears, and an outer ring gear. The planet gears mesh with both the sun gear and the ring gear, creating a compact and efficient gear system. Planetary gears offer high torque transmission, high gear reduction ratios, and excellent load distribution. They are commonly used in gear motors for applications that require high torque and compact size, such as in robotics, automotive transmissions, and industrial machinery.

6. Rack and Pinion:

Rack and pinion gears consist of a linear rack (a straight toothed bar) and a pinion gear (a spur gear with a small diameter). The pinion gear meshes with the rack to convert rotary motion into linear motion or vice versa. Rack and pinion gears provide precise linear motion control and are commonly used in gear motors for applications such as linear actuators, CNC machines, and steering systems.

The choice of gear type in a gear motor depends on factors such as the desired torque, speed, efficiency, noise level, and space constraints. Each type of gear offers specific advantages and impacts the performance of the gear motor differently. By selecting the appropriate gear type, gear motors can be optimized for their intended applications, ensuring efficient and reliable power transmission.

China high quality Ye3-315s 75kw Efficiency Asynchronous Motor for Reduction Gear   vacuum pump brakesChina high quality Ye3-315s 75kw Efficiency Asynchronous Motor for Reduction Gear   vacuum pump brakes
editor by CX 2024-04-09

Geared Motor

As one of the leading geared motor manufacturers, suppliers, and exporters of mechanical products, We offer geared motor and many other products.

Please get in touch with us for details.

Manufacturer supplier exporter of the geared motor.

Recent Posts